$FSZ$-groups and Frobenius-Schur indicators of quantum doubles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence Subgroups and Generalized Frobenius-schur Indicators

We define generalized Frobenius-Schur indicators for objects in a linear pivotal category C. An equivariant indicator of an object is defined as a functional on the Grothendieck algebra of the quantum double Z(C) of C using the values of the generalized Frobenius-Schur indicators. In a spherical fusion category C with Frobenius-Schur exponent N , we prove that the set of all equivariant indicat...

متن کامل

Twisted Frobenius–schur Indicators for Hopf Algebras

The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...

متن کامل

A Note on Frobenius-schur Indicators

This exposition concerns two different notions of Frobenius-Schur indicators for finite-dimensional Hopf algebras. These two versions of indicators coincide when the underlying Hopf algebra is semisimple. We are particularly interested in the family of pivotal finite-dimensional Hopf algebras with unique pivotal element; both indicators are gauge invariants of this family of Hopf algebras. We o...

متن کامل

Higher Frobenius-schur Indicators for Pivotal Categories

We define higher Frobenius-Schur indicators for objects in linear pivotal monoidal categories. We prove that they are category invariants, and take values in the cyclotomic integers. We also define a family of natural endomorphisms of the identity endofunctor on a k-linear semisimple rigid monoidal category, which we call the Frobenius-Schur endomorphisms. For a k-linear semisimple pivotal mono...

متن کامل

Frobenius-schur Indicators for Subgroups and the Drinfel’d Double of Weyl Groups

If G is any finite group and k is a field, there is a natural construction of a Hopf algebra over k associated to G, the Drinfel’d double D(G). We prove that if G is any finite real reflection group, with Drinfel’d double D(G) over an algebraically closed field k of characteristic not 2, then every simple D(G)-module has Frobenius-Schur indicator +1. This generalizes the classical results for m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2014

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2014.v21.n4.a9